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\\J Abstract

Distribution-free tolerance bounds are obtained for the life
time of an m-out-of-k system of unlike components. It is assumed

that the life time distributions of the k components belong to a

stochastically ordered family of distributions. Two criteria are
: 5 used to determine the tolerance bounds. These criteria are exten-

sions of the criteria used in a single population literature.
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1. Introduction

Reliability studies of series, parallel or complex-systems
based on component test data is of considerable interest and prac-
tical significance. Sometimes it may be much more economical to
test components of a system seperately rather than testing the whole
system or it may be that the reliability-testing of the whole system
cannot be done without destroying the system. For such situations,
working with component test data, a number of authors have consid-
ered the problem of lower confidence bounds for a series or parallel
system (see Mann (1974), Mann and Grubbs (1974) and the references
therein.) The problem discussed in this paper is different in threce
respects from the confidence bound problem. Instead of confidence
bounds for the reliability of a system for a specified time, we con-
sider tolerance bounds for the life time distribution of the system.
Usually lower tolerance bounds are of much interest. These toler-
ance bounds can then be used to obtain confidence bounds for quan-
tiles of the life time distribution of the system (see Conover (1971)
p. 118). Since a series system and a parallel system are special
cases of an m-out-of-k system (see Barlow and Proschan (1975)), we
consider the tolerance bounds for an m-out-of-k system. Such a
system is of interest by itself also, as a redundant system. The
system then has k components but needs only m to function properly.
Lastly the assumption of exponential life time distributions for
the components is replaced by a much weaker assumption that the life
time distributions of the components belong to a stochastically
ordered family of sitributions, that is there is no crossover between

any two distribution functions. This assumption of "no crossover"
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is satisfied by many families of distributions. In particular, “he

assumption holds if the lifetime distributions for the components
are all exponential with different scale parameters or if these life

time distributions are Weibull with same shape parameter and dif-

ferent scale parameters or same scale parameter and different shape

parameters.
Let Tl""’Tk denote the lifetimes of the k components of an

m-out-of-k system with continuous distribution functions F ..,F

1’ k

respectively. Then the lifetime of the system is T(k-m+1)’ the

(k-m+1)st smallest of the Ti's. Let Hm " denote the distribution

3 1
function of T(k-m+1)‘ We assume that the F.'s do not have any

crossovers, i.e., there is a permutation of (1,2,...,k), let it be

denoted by ((1),...,(k)), such that F(l)(x) LEERE (x) for

= P
all x. A procedure for the distribution-free tolerance bounds for

H is described below.
m,k

Procedure. Let Ti,r,n denote the waiting time for the rth failure
among n prototypes of the ith component, put on test simultaneously,
all with distribution function Fi i=1,...,k. Let the waiting times
from the k seperate experiments be ordered as

Tayse,n 27 2 Tysr,ne

For r <s, 1 < j (with at least one strict inequality) we define a

tolerance interval i

Lii ® Teysre,n Ty ss,n)e (1.1)

Adopting the convention that T(0)°r n" 0 and T(k+1)-s n " +o for
3 ] s }

any r and s, we can write a lower tolerance interval and an upper

tolerance interval as




(3)
Li kel = Tiysr,ne™) (1.2) |
L - = » T L L] .
. fo,5 = O T(5y5s,n0) (1.3)
i The motivation for considering the above procedure is the

following. Suppose for some A, 0<A<l, the A-quantiles for the life
times of the k components were known as CPERRRNL and we decide to

use q(k-m+1)’ the (k-m+1l)st smallest of these quantiles, for the

lower tolerance bound for Hm K Then the probability that the life

jj. time of an m-out-of-k system will exceed A(k-ms1) is 1 - Hm,k(q(k-m+1))‘

It can be shown that an upper bound for Hm,k(q(k-m+1))

is G(F(p) (Q(gpe1))s 1 M = GGGLm = 1-(2-0)™ (G is defined later).

(m

- Thus if A < 1 - gt/™

where 8 is preassigned, the probability that
g the life c¢ime of an m-out-of-k system will exceed q(k-m+1) is at
least 8. Since in practice we do not know qi's, they are estimated

b Ti.r.n and then T(k-r+1);r,n estimates q(y_p.1y-

We shall use two criteria for the determination of n,r,s,i and j
for given m and k. These criteria are extensions of the criteria
used in the single population literature (see Guttman (1970)) and

were used by Saxena (1976). Let P(Ii 3 | Hm k) denote the probabil-
’ 1 4

ity coverage of the tolerance interval I by Hm k- Then
’ ]

j

P(I, j | H, ) is a random variable whose distribution depends on
» ’

F, where F = (Fl,...,Fk). Let @ be the set of all k-tuples F in

which no two Fi's have any cross overs.

. - :
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Criterion A. An interval Ii j is a B-expectation tolerance inter-

val for Hm,k if

inf E,(P(I H . 1.4
inf Ep(PCI, .| Hy )) 2 8 (1.4)

Criterion B. An interval Ii j is a g-content tolerance interval

for Hm k with confidence level y if

igf pF(P(Ii,j | Hm,k) > B8) > ¥v. (1.5)
Note that from (1.2) and (1.5) we can obtain also a lower confi-
dence bound for the (1-8) quantile of Hm,k' It is T(i);r,n with
confidence coefficient at least y, if i,r,n are chosen to satisfy
(1.5).

In the sequel we use the following notation: Let g(x;r,n)

given by

n+1l r-1 n-r+l-1
g(x;r,n) = F%éTTT%-r+1) X (1-x) T , 0 ¢« x <1,

denote the density function of a beta distribution with parameters
r and n-r+l and let the corresponding distribution function be
G(x;r,n). Then G(G(x;r,n);i,j) is the cdf of the ith order statis-
tic in a sample of size j from a beta distribution with parameters
r and n-r+l,

Lower bounds for the infima in (1.4) and (1.5) are obtained
in Theorems 1 and 2 and their corollaries in the Appendix. Using
those bounds the choices for i,j,r,s and n for the intervals (1.1)-

(1.3) are discussed below in Section 2.
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2. Choices for i, j, r and s.

Whether we want a tolerance interva; of a given expected
coverage (Criterion A) or a tolerance interval whose probability
coverage exceeds a preassigned B (Criterion B), clearly it is desir-
able to have the intervals as ''short" as possible. This is done by
taking i and r as large as possible and j and s as small as possible.
In view of the restrictions under which the bounds have been obtained
in Theorems 1 and 2 in the Appendix we take i=j=k-m+1l. Then the

intervals are

Leemed,komel = Tgkems1)sron T(keme1);s,n) (2.1)
Lemel kel = (Tgemen)e,ne ™) (2.2)
Io,k-me1 = (0T mery) - (2.3

For example, to get a lower tolerance bound on a 2-out-o0f-4 system
we first find the rth failure times among n prototypes of each of

the four components and then take the third smallest of these four
failure times. In the rest of this section we consider the choices

for r and s for the two criteria seperately.

Criterion A. Let Z(i) J.(rn,n) denote the ith order statistic in a
9

sample of size j from a population with distribution function

G(x;m,n) . Then it is easy to see that the lower bounds for expected

coverages of intervals (2.1)-(2.3), from results in the Appendix,

can be expressed in terms of the moments of 2(1) j(m,n) in the
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following manner:

k-m+1l m
k-m+1,k-me1 | B0 2 EZ(q) m (S5R)*EZ(yy 4, (n-r+l,n)

inf E_P(I
R =

(2.4)

. m '
13f EEP(Ik-m+1,k+1) > Ez(l),k-m+1 (n-r+l,n), (2.5)

. k-m+1 (2.6)
1gf EEP(IO,k-m+1) > Ez(l),m (s,n)

Next we have to decide the values for r and s so that the right

hand side quantities in the above inequalities are larger than 8.

For this we observe that G(x;r,n) < G(x;r',n) if r > r'. Hence from
Lemma 2.2 of Saxena (1976) it follows that any moment of Z(l),j(m,n),
for fixed j and n, increases with m. So the lower bounds in (2.5)
and (2.6) decrease when r is increased and s is decreased. Conse-
quently for the one sided interval, the optimum values for r and s
are respectively the largest and smallest values which bring the
lower bounds (2.5) and (2.6) as close as possible to the preassigned
8 value. For the two sided tolerance interval it is an extremely
difficult problem to choose the largest r and the smallest s such
that the lower bound (2.4) stays above 8 and at the same time the
interval is as "short'" (in the sense of expected length) as possible.

To overcome this difficulty we restrict the choices of r and s to

those values which make the expected coverage of the two tails out-
side the interval as close to (1-8)/2 as possible. This requires

that we choose the smalelst s and the largest r so that

k-m+1l
(1) ,m

k-m+1l

EZ (s,n) > (1+8)/2 and Ez(l),m (n-r+l,n) > (1+g)/2. (2.7)
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The moments of Z(l) J.(m,n) needed for solving for r and s have to
»

be evaluated by numerical integration. But this numerical inte-

gration can be avoided,since for all practical purposes,a lower

bound on these moments, given in the lemma below, works as well as

i
§
% 3
& 3
)
¥

the exact value. A few exact values and lower bounds tabulated in

Table 1, indicate a difference of less than one per cent.

Lemma 2.1. For any i and j

ﬁ n!(l+r-1)! i n!(i+r-1)!

! GO IERITIRICEUER oot o

. . . 2\ %
d j-1 n!(2i+r-1)! _fni(i+r-1)!

3 '/._ (ir-Ii!im%x.i! ((r-T)!(n+i)T) ) .
i 2j-1 (2.8)

Proof. Let gj(z) denote the pdf of 2(1) j(r,n). Then for

j o> j',gj(z)/gj-(z) is a decreasing function of z and therefore

i i | (isr-1)!
EZ(1y,5(rsm) < BZyyy o (T,n) = VA CE

For the lower bound the proof is based on the approach of Sugiura
(1962). The steps of the proof are similar to David (1970), p.54,

and are omitted.

Large n: If r/n + A as n +«, it is seen that both the upper and the

lower bounds for EZ%I) J.(r,n) in (2.8) coverge to xi. So for large n,
H

even an approximation for the lower bound suffices as an approxima-

tion for the exact value, i.e.,

- B T
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EZ%I)’j(rn,) e

s - Ge @ /n2i-1)) 5 (i-1-1a-2) /2n]
(2.9)

Criterion B. From results in the Appendix, the lower bounds for the

confidence levels for the B8-content tolerance intervals can be

written as

igf PE(P(Ik_m+l’k_m+1 | Hm,k) > B8)

>(6(1- ((1+8)/2) Y/ ™r,ny 1K™ o [1-6((aep) /2t (M) gy,
(2.10)

1/ (k-m+1)

. ] m
1gf PE(P(Io’k_m+1 | Hp i) 2 8) 2{1-G(8 s,n) ],

/m k-m+1

;T,n)]

. 1
inf Pp(Py per, kel | Hy ) 2 8) 2 [G(-8

-~

Since G(x;r,n) is a nonincreasing function of r, the lower bounds
in (2.11) and (2.12) are decreased when s is decreased and r is
increased. Thus the optimum values for r and s are the largest and
the smallest values respectively which bring the bounds (2.11) and
(2.12) as close to Yy as possible. For the two sided interval we
consider those values of r and s optimum which give a probability
of, at most (l-y)/2, for the probability content of each tail out-
side the interval to be at most (1-8)/2. This is done by choosing

the smallest s and the largest.r so that
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PR . -

G(((+8) /) M) g yar- ey /) MM, (2.13)

and

G(1-((1+8)/2)1/™;x,n) > ((1ey)/2yt/ (Romr1) (2.14)

Large n: When n is sufficiently large the normal approximation

¢((-r+1+nx)/(nx(l-x))%) for G(x;r,n) can be used for all three

intervals.

3. Numerical Examples

i We consider numerical examples for criteria A and B for the

lower tolerance intervals.

Criterion A: Consider a 2-out-of-4 system (m=2,k=4). Let g=.8,
n=40, For a lower tolerance interval choose the largest r so that
S? EZ%I),3(41-r,40)=.8, From the table we find that sz%l),3(33,40)
=,7971. Thus a .8-expectation lower tolerance interval is

4 (T(s);3’40,m). The approximation (2.9) gives the value .8000 for
: B2y 5(38,40).

Criterion B. Consider a 2-out-of-4 system (m=2,k=4). Let B=.8,
v=.8, n=40. Then using (2.12) and the incomplete beta function

tables by Pearson (1968) we see that the largest value of r for which

G(1-8Y™r,n) > v

L AT e b

? is r=2. Thus the .8-content lower tolerance interval with confi- f

dence level .8 is (T(:s),2 40,w).

IR
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4. Concluding Remarks

The goal of this paper is to obtain tolerance bounds for the
lifetime distribution of an m-out-of-k system based on component
test data. The procedure discussed is not recommended when it is
practically feasible to test a system as a whole. But situations
where it is not possible to test a whole system are numerous and
statistical procedures based on component test data have been exten-
sively discussed by various authors cited in section 1. In most of
the previous works the emphasis is on exponential distributions and
confidence bounds for reliability to an assigned time. Tolerance
bounds have not been discussed in previous works. The only assump-
tion made about the lifetime distributions of the components is that

they are stochastically ordered. This enables us to work with% order

L e BN S

|- statistics and obtain djistribution-free bounds.
It should be noted that while determining r and s for the bounds,

the extreme values for r and s are 1 and n respectively. If even

,m,,i
e R TR ST ey

with such extreme choices for r and s it is not possible to meet the

specifications, then a larger sample size has to be used.
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- 1 6. Appendix

Theorem 6.1 For the tolerance Ii ; given by (1.1), if

b 3 ’

i < k-m+l < j, then

ko
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1
1gf EEP(Iij)Hm,k > IOG(Y;k'm*l.J)d[G(G(Y;S.n);l.k‘J*l)]

1
- I G(y; k-i-m+2,k-i+1)d{G(G(y;r,n);i,i)].
0 (6.1)

Proof. From (1.1) we have

- E

EpP (145 M) = EEHm,k(T(j);S.n) EHm'k(T(i)‘r’n)

say . (6.2)
A lower bound on the infimum of (6.2) over Q@ is obtained by replac-

ing E; by a lower bound and E, by an upper bound. Corresponding to

a vector F ¢ Q define

Fl(i) = (F(gyseFy 1oenenl) (6.3)
and + i -
Foli) = (0,...,0, FiiyuennFyy) (6.4)

—ji-1l—r
Then using Lemma 2.1 of Saxena (1976) we have

Mo,k (8) = Pe(Trmeny £ 8 2 Ppoic-go1) Tieemeny <°8)

= G(F (3541 (8 ik-m*1,5)

Then

Ey= EgH k(T

F'm, );k°m*19j)

) 2 B8 5+1) T3y 5s,m g

(j)ss,n

> E );k-mel,j) . ;

6(Fk-5+1)T(5)5s,n ,

FL(k-j+1) !
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Under F!(k-j+1), the cdf of T(5)is,n 1

G(G(F(k_j*l)(-);s,n);l,k~j+1). Therefore

1
R O e LGRS I (6.5)
Working similarly for an upper bound for Ez we have
1
E, < | G(y;k-i-m+2,k-i1+1)d{G(G(y;r,n);i,1)]. (6.6)
- 0
Now the theorem is proved using bounds (6.5) and (6.6) in (6.2).
Corollary 6.1 For the one sided tolerance intervals Ii k+1 and
Iy 3 given by (1.2) and (1.3), if i < k-m+1l < j, then

1
igf EFP(Ii,k+1 | Hm,k) > 1- [oG(y;k-i-m+2,k-i+1)d[G(G(y;r,n);i,i)],
- (6.7)
1
inf EP(Ig 5 | Hy ) 2 [ GUkeme1,1)AI0(60yis,m) 5L k-5+ 1. (6.8)

The proofs are omitted.

Theorem 6.2 For the tolerance interval Ii j given by (1.1), if

Proof. We can write

i < k-m+1 < j, then

inf Pp(R(L; 5 | H o) 2 8)

> G(G(G Y((1-8)/2;k-i-m+2,k-i+1);r,n);i,1)
- G(G(G'l((1+8)/2;k-m+1,j);s,n);1,k-j+1). (6.9)

PE(P(Ii,j l Hm,k) 28) = pg(Hm,k(T(j);s,n) - Hm(T(i);r’n)lB)

v

Pr(Hy 1 (T (5)p,)(1°8)/2)

PE(Hy i (T )< (1+8)/2)

(j)is,n

PL((1-8)/2) - P,((1+8)/2, say.  (6.10)




(13)

B omi

i |
e F . .
31 , Now we get a lower bound for the infimum over 2 by replacing Pl(-)
by a lower bound and PZ(') by an upper bound. From lemma 2.1 of
; Saxena (1976) we have
) H ,(t) <P (T <t)
m,k - Fl(k-i+1) (k-m+1)—
uﬁ = G(F(k_i+1)(t);k-i-m+2,k-i+1).

Then

' Pl((l‘B)/z)

fv

PE(G(F(k_i+1)(T(i);r’n);k-i-m+2,k-i+1)§(1-6)/2)

) pE(F(k-i+1)(T(i);r,n)iﬂ)» (6.11)

where a = G'l((1-8)/2;k-i-m+2,k-i+1). From theorem 2.2 (b) of
Saxena (1976)
igf PE(F(k-i+1)(T(i);r,n)ia) = G(G(a;r,n);i,i).

Hence from (6.11)

inf Py ((1-8)/2)>G(G(a;r,n);i,i). (6.12)
7}
‘%; Similarly we can show that
sup P,((1+8))/2)<G(G(b;s,n);1,k-j+1), (6.13)
Q

where b = G-l((1+8)/2;k-m+l,k~j+1). Now using (6.12) and (6.13)

in (6.9), the theorem is proved.

Corollary 6.2. For the one sided tolerance intervals Ii k+1 and

I given by (1.2) and (1.3), if i < k-m+1 < j, then

0’5 H

. -1 b ity Cis
1gf Pe(P(I; yop | Hp ()28)2G(G(G “((1-8);k-i-m+2,k-i+1);r,n);i,1),
- (6.14)

inf P(P(I, . | H.  ,)>8)>1-G(G(G L(B;k-m*1,j)s,n);1,k-j+1). (6.15)
Q § 0,j m,k/="/=

The proofs are omitted.
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Table 1

Expected values of Z‘(‘“ j(r.n) and the lower bounds: First entry is the exact value of
‘ ’

Ez‘('l) j(r.n) and the second entry is the lower bound given by (2.8); ** in the second

entry indicate that the lower bound (2.8) is equal to the exact value.

n: 10 20 30 40
r: 10 9 20 19 18 17 30 29 28 27 40 39 38 37 36
(1£,3)
{(1,1)1.9091{.8182|.95241.90481.8571(.8095|.96781{.9355(.3032({.8710}1.9756}.9512].9268 |.3024|.8780
L2 ] L 4 ] 'k L 2 e *re L2 ) re e e *e E X ] e [ 2 ] *h

(1,2)(.8658(.7567|.9291(.8708|.8158.7627( .9519|.9121|.8745 |.8380(.9636 |.9334|.9048 |.8771.849¢
.8611(.7539|.9262(.8686 |.8141.7612|.9417|.9104{.8731|.8386(.9619|.9320(.9036 |.8760|.8489
(2,1)(.8333.6818{.9091|.8225(.7403(.6623| .9375(.8770|.8185.7621|.9524(.9059|.8606 |. 8165 |. 773=
*w LA L & 4 L2 LA LA e [ 2] L2 [ 24 e *h [} ] L X4 [ 2 ]

(1,3)(.8379|.7207{.9139|.8504.7921|.7366| .9404{.8979(.8578{.8194.9556 |.9225 |.8919 |. 8626 |. 8342
.8348(.7186.9118{.8488(.7904 |.7346|.9398 {.8966 | .8565 |.8180(.9543 |.9214|.8909 [.8615 |.8329
(2,2)|.7576(.5844(.8658(.7623(.6708 |.5878| . 9073 (.8338|.7673 (. 7055 (.9292 |.8723 [.8203 |. 7713 |. 7247
' .7520{.5824{.8612|.7596 |.6689 |.5865(.9036 | .8314|.7655|.7040.9262 |.8702|.818s |. 7697 |. 7233
(3,1)].7692|.5769 | .8696 | . 7510 |.6437 |.5471| . 9091 (.8239(.7441|.6697|.9032 |.8638 |.8006 |. 7405 |. 6836
L 1] *e e L 2] L2 4 *e £ 2 4 L4 4 L2 *e L2 ] [ 2 ] 'z ) 2 (1]

(1,4) |.8174|.6958(.9026(.8359 (. 7757 (. 7189] .9336 |.8878 |. 8461 |. 8066 | . 9496 |.9147 |. 8829 [. 8527 |. 8234
.8150(.6919.9009|.8338.7725 |.7146{.9323 |. 8862 |.8440 |.80138 . 9486 |.913s |. 8813 [. 8505 |.8208
(2,3){.7102{.5306{.8378|.7271|.6323 |.5482| .8875 {.8082|.7383{.6744{.9119 {.8522 (. 7971 {. 7460 |. 6980
.7073|.5278.8349|.7250 |.6298 |.5448( .8850 |.8063 (. 7363 |.6720{.9118 |.8506 |. 7954 |. 7441 [.6957
(3,2) |.6689|.4593{.8089.6706 |.5555 |. 4575 | .8658 |. 7641 | .6756 |. 5965 | . 8966 |. 8164 {. 7450 . 6798 [.6197
.6639|.4583}.8038|.6680|.5541 |. 4564|.8612 |. 7613 [.6737|.5921(.8926 |.8138 |. 7431 |.6782 |.6183
(4.1)|.7143|.4945|.8333|.6884|.5632 |. 4560 .8824|.7754|.6785|.5909}.9091 |.8245 |. 7460 |.6732 |. 6059
L2 J re L 1 *e e e 1 e LA L2 ] L 2] *e L 1] *e *e

(1,5)(.8014(.6768(.8937].8248(. 7616 |. 7055 . 9274 |. 86800 | .8372 |.7969{.9449 |.9071 |.8760 | . 8451 |. 8153
' .7984|.6697(.8918].8213|.7577/.6979| .9261|.8776 | . 8335 . 7920|.94139 |. 9069 |.8733 |. 8414 [.8107
(2,4)|.6764| .4946 |.8174].7027.6064 |.5220| .8730 |. 7901}.7104|.6534(.9026 |.8379 |. 7810 |. 7288 |. 6800
.6736| .4866 |.8150|.6989 |.6002 [.5133( .8709 |.7874|.7143|.6479|.9009 |.8358|.7779|. 7247 | 6749
(3,3)].6081} .3978|.7704{.6248|.5084 |.4118| .8379|.7291|.637% |.5574|.3747|. 7883 |. 7126 |.6466 | 5857
.6061| .3932|.7672|.6225|.5048 |.4066| . 8349 {.7270|.6350 |.5541|.8720|. 7864 |. 7115 |.6440 | 5825
(4,2)| .5952| .3665|.7576|.5926 | .4631 |. 3592| .8272 . 7016 |.5966 |. 5064 |.8658 |. 7650 |.6778 |. 6006 | 5315

gt e e

o . TS

.59131.3659].7520|.5906 |.4620 |. 3581 .8220|.6989|,.5949|.5052}.8611 |.7622 |.6760 |{.5992 | 5302
"(5,1) .6667(.4286|.8000].6333|.49%6 (.5220| .8571}.7311].6203].5234).8889|.7879 }.6962.6134 |. 5386
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*w

e




References

Barlow, R. E. and Proschan, F. (1975). Statistical Theory
of Reliability and Life Testing-Probability Models. New York:
Holt, Rinehart and Winston, 1Inc.

[2] Conover, W. J. (1971). Practical Nonparametric Statistics.
New York: John Wiley and Sons, Inc.

[3] David, H. A. (1970). Order Statistics. New York: John Wiley
and Sons, Inc.

(4] Guttman, I.(1970. Statistical Tolerance Regions. London: Griffin Press

(5] Mann, Nancy R. (1974). Approximately optimum confidence
bounds on series and parallel system reliability for systems
with binomial subsystem data. IEEE Transactions on Reliability,
235, 295-303.

(¢] Mann, Nancy R. and Grubbs, Frank E. (1974). Approximately
optimum confidence bounds for system reliability based on com-
ponent test data. Technometrics, 16, 335-347.

(7] Pearson, E. S., and Johnson, N. L. (1968). Tables of the
Incomplete Beta-Function London: Cambridge University Press.

(8] Pledger, G., and Proschan, F. (1971). Comparisons of order
statistics and of spacings from heterogeneous distributions.
Optimization Methods in Statistics 89-113. New York: Academic Press, Inc.

S———

[(9) éggena, K. M:ELAi:{1976). Distribution-free tolerance inter-
a

~~vars ot stoc

stically ordered distributions. Ann. Statist.,
4,1210-1218.

{10] Sen, P. K. (1970). A note on order statistics for heterogen-
eous distributions. Ann. Math. Statist.,41,2137-2139.

[11] Sugiura, N. (1962). On the orthogonal inverse expansion with
an application to the moments of order statistics. Osaka
Math. J.,14,253-263.




i
ki
¥
1

ji
§
i
A
¢

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS SAGE (When Dets Entered)

REPORT DOCUMENTATION PAGE BEF e o T M
mﬂu—uﬂljﬂ 2. GOVT A:;tmon WO ). RECIPIENT'S CATALOG NUMBER
N 109 ADAOTY 99

4. TITLE rand Sudtitie) S. TYPE OF REPOARYT & PERIOD COVERED

p————————————————————————————————————————
6. PERFOAMING 07‘. REPORT NUMBER

17 AuTwOR(s) S. CONTRA ANTY NUM ")
NO0014-75-C-0451
75, BRGGRAM ELEMENT, PROJECT, TABK |

AREA & WORK UNIT NUMOERS

. PERFORMING ONGANIZATION NAME AND ADORESS

Clemson University /

Dept. of Mathematical Sciences NR o4vgﬁfgér
Clemson, South Carol 2
1. CONTROLLING OFFICE NAME AND ADDRIESS 12. REPORYT OATE

Office of Naval Research 16 Sept 1979

Code 434 13. NUMBER OF PAGES

Arlington, Va. 22217 15

. MONITORING AGENCY NAME & ADORESS({{ ditferent irom Contrelling Otftce) ‘i. SECURITY CLASS. (of this report)
Unclasgified

18a. OECL ASSFICATION/ DOWNGRADING |

e DUI.l' ATION. 1] ADING

6. OISTRIBUTION STATEMENT (of thie Repers)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetroct entered in Blesk 20, il ditierent irom Repost)

e ———————————
16. SUPPLEMENTARY NOTES

[19. KEY WORDS (Continue on side if ary and Identily by Moek mumber)
Distribution-free; tolerance bounds; reliability and
life testing, m-out-of-k system, beta distribution.

(30, ABSTRACT (Continue on reveres +16e (f nocoosary and idsntify by Siesk sumber)
Distribution-free tolerance bounds are obtained for the life

time of an m-out-of-k system of unlike components. It is assumed
that the life time distributions of the k components belong to a
stochastically ordered family of distributions. Two criteria are
used to determine the tolerance bounds. These criteria are exten-
sions of the criteria used in a single population literaturs.

S d

ronm
DD , an 7 1473 zoimom oF 1 oV 68 13 oBsOLETE
$/N 0102°014- 6601 :




